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Abstract— Affective computing has traditionally relied on 

predictive models that use summary annotations to understand 

emotions, an approach that often fails to capture the continuous 

nature of emotions. In this paper, we explore the previously 

unexamined possibility of understanding the temporal dynamics 

of emotions using the Continuously Annotated Signals of 

Emotion (CASE) dataset during the Emotion Physiology and 

Experience Collaboration (EPiC) 2023 competition. We present 

the first performance benchmark for predictive models using 

continuous annotations on this dataset, in which we achieve 

significantly better results than baseline models for specific 

scenarios. Our contributions include the development and 

comparison of predictive models for different affective 

dimensions, demonstrating that arousal models outperform 

valence models, a finding consistent with existing affective 

science literature. In addition, our analysis shows that 

predictions incorporating features from past data are more 

informative than those based on future data, suggesting that 

physiological activity precedes affective experience and 

subsequent annotation. These findings contribute to a deeper 

understanding of the temporal dynamics of emotion and have 

broad implications for both affective computing and affective 

science, highlighting the potential of this interdisciplinary 

approach. 

 Index Terms— affective computing, affective science, 

temporal dynamics 

I. INTRODUCTION  

Affective computing, a rapidly expanding field, combines 
various disciplines in its quest to develop systems and 
algorithms that recognize, interpret, and simulate human 
emotions [1]. These algorithms often use a variety of signals - 
text, audio, video, and physiological data - to infer affective 
states. Historically, a common approach within predictive 
models of affect has been to use summary annotation, where 
physiological data is collected over a period of time (e.g., 

while individuals are exposed to certain stimuli, such as 
watching movie clips) and then annotated post hoc (e.g., 
assigning a valence rating between 1 and 9 after the clip has 
ended). While this approach has been useful, its discontinuous 
nature often obscures the intricacies of affective dynamics. An 
underexplored area lies in understanding the temporal 
dynamics of emotions, which has the potential to enrich both 
affective computing and affective science [2]-[4]. 

The temporal dynamics of human emotions is a key area 
of research in affective science, as it provides insights into the 
mechanisms that govern the initiation, maintenance, and 
resolution of emotional experiences [3]. Understanding these 
dynamics can provide valuable information about how 
emotions unfold and interact over time, which is essential for 
developing more accurate and adaptive affective computing 
systems [5]-[6]. Our work takes advantage of this opportunity 
by using the Continuously Annotated Signals of Emotion 
(CASE) dataset [7] and participating in the Emotion 
Physiology and Experience Collaboration (EPiC) 2023 
competition [8], aiming to bridge the gap between affective 
computing and affective science by studying the temporal 
dynamics of emotions. Our research is guided by two main 
goals: 

1. Analyze the performance of predictive models of 
affective states using continuous annotations, 
marking the first attempt to establish a performance 
benchmark for continuous predictive models on the 
Continuously Annotated Signals of Emotion (CASE) 
dataset. 

2. Investigate the relationships between arousal and 
valence prediction tasks, as well as the role of 
physiological data in affective experiences, providing 
insights into the complex interplay between affective 
dimensions, their temporal dynamics, and potential 



relationships between physiological activity and 
affective states [9]. 

This work begins by presenting our research strategy and 
methodology, followed by a detailed analysis of our findings, 
and concludes with a discussion on the impact of our research 
on the field. 

 

II. METHODOLOGY 

A. Dataset 

The Continuously Annotated Signals of Emotion (CASE) 
dataset used in this study contains simultaneous physiological 
data and affective annotations from 30 participants [7]. 
Participants viewed a series of video stimuli designed to elicit 
different emotional responses while continuously reporting 
their emotions using a joystick-based interface that allowed 
simultaneous annotation of valence and arousal (on a scale of 
0 to 10). Collected physiological measures, including 
electrocardiograph (ECG), blood volume pulse (BVP), 
electrodermal activity (EDA), respiration (RSP), skin 
temperature (SKT), and electromyography (EMG), provide an 
in-depth understanding of participants' physiological 
responses to the stimuli. The pioneering approach of the 
CASE dataset, with continuous and simultaneous annotation 
of valence and arousal, is of significant value to both the 
affective computing and affective science communities. 

B. Data Preprocessing and Feature Extraction 

During data preprocessing, each physiological variable 
was filtered according to its specific characteristics, 
following recommendations from the physiological literature 
[10].  ECG data were refined using a 0.5 Hz high-pass 
Butterworth filter of order 5, followed by power line filtering 
at 50 Hz. The EDA signals underwent a low-pass filter with 
a cutoff frequency of 5 Hz, followed by a 4th order 
Butterworth filter. For the respiratory data, we implemented 
linear detrending and an IIR low-pass filter of order 5 with a 
cutoff frequency of 2 Hz [11]. The EMG data collected from 
the zygomatic, corrugator, and trapezius channels were 
subjected to a 100 Hz 4th order Butterworth high pass filter 
with constant detrending. No preprocessing was applied to 
the BVP and SKT signals; instead, the raw data were used. 

Five additional continuous signals were then extracted: 
three from EDA (phasic component, sparse SMNA driver of 
the phasic component, and tonic component) [11], one from 
ECG (NN intervals) [13], and one from respiration 
(instantaneous respiratory rate) [14]. 

The inclusion of EDA and its decomposition into three 
distinct signals is essential to improve the prediction of 
arousal in affective states. EDA, a measure of skin electrical 
conductance, is widely recognized as a reliable indicator of 
emotional arousal due to its sensitivity to sympathetic 
nervous system (SNS) activity. The phasic component of 
EDA captures rapid fluctuations in conductance that are 
closely related to momentary changes in arousal. The sparse 
SMNA driver of the phasic component provides insight into 
the underlying neural activity driving these rapid 
conductance changes, further enriching the arousal-related 
information derived from the EDA signal [11]. Finally, the 
tonic component of EDA reflects the slower changing, 
baseline level of arousal [9]. By incorporating these three 
EDA-derived signals into the model, we aim to capture a 

more comprehensive representation of arousal dynamics and 
thereby improve the prediction of affective states. 

On the other hand, both the extraction of the respiratory 
rate signal and the calculation of the distances between the R 
and R peaks in the ECG signal after removal of ectopic beats 
(i.e., NN intervals) were included as variables to predict 
affective states because of their established associations with 
emotional regulation and reactivity. Breathing rate has been 
associated with emotional arousal, with faster breathing rates 
typically observed during high arousal states [15]. 
Furthermore, breathing patterns have been shown to differ 
between emotional states, providing valuable information 
about affective experiences [16]. Similarly, NN intervals in 
the ECG signal allow the measurement of heart rate 
variability (HRV), a widely used index of autonomic nervous 
system (ANS) regulation [12]. HRV has been shown to be 
sensitive to changes in emotional state, with reduced HRV 
observed during stress and negative emotions [17]. 
Consequently, the inclusion of respiratory rate and NN 
intervals as predictors may contribute to a more accurate 
estimation of affective states, building on the established 
relationships between these physiological measures and 
emotional processes in the literature. 

C. Data Aggregation 

In the data aggregation phase, our primary goal was to 
accurately capture temporal physiological data patterns for 
effective prediction of affective states. We employed a 
strategy of variable sliding windows, the length of which was 
determined through a validation process. Specifically, we 
used a 6-second window length for scenario 1 and a 10-
second window length for scenarios 2, 3, and 4. These 
window sizes were chosen based on their ability to capture 
and represent the dynamics of emotional responses while 
maintaining computational efficiency. We then centered each 
annotation within its respective sliding window, thereby 
capturing both past and future physiological data relative to 
the current affective annotation. This arrangement is intended 
to account for the temporal evolution of emotional 
experiences and provide a comprehensive snapshot of the 
affective context at each annotation point. To further explore 
the temporal dynamics of emotions, we divided each window 
into three equally sized segments, labeled "past," "present," 
and "future. For example, in scenario 1 with a 6-second 
window, each 2-second segment (from -3 to -1 sec, from -1 
to 1 sec, and from 1 to 3 sec) was analyzed separately. The 
motivation behind this tripartite division is to distill 
meaningful features from different temporal contexts to 
provide a granular understanding of the affective state 
trajectory. 

Finally, the data within each window was aggregated 
using various statistical measures. After a preliminary test 
combining different features for predicting scenario 1 (using 
a validation set), the mean and the minimum were chosen as 
aggregation measures. These two measures provide insight 
into both the central tendency and the dispersion (and 
outliers) in the data, providing a comprehensive 
representation of the physiological signals for predicting 
affective states. 



D. Hyperparameter Tuning and Model Training for 

Interpretable Affective State Prediction 

The model selection and training process focused on using 
interpretable models with an emphasis on understanding 
affective states. Two different models, Random Forest and 
XGBoost, were individually trained and evaluated for their 
potential to predict valence and arousal. These models were 
chosen specifically for their ability to provide insight into 
feature importance and generalizability [18], [19]. During the 
model validation process, both the Random Forest and 
XGBoost models were trained separately on each training 
partition (i.e., fold) of the different scenarios. The decision to 
use the Random Forest or XGBoost model for the final 
prediction was made independently for each scenario, based 
on the performance metrics obtained during validation. It is 
important to clarify that we did not use an ensemble of both 
models, but rather selected one or the other based on their 
individual performance in each specific context. 

For the Random Forest Regressor model, the following 
hyperparameters were examined: 

• The number of trees, with values of 50 and 100. 

• The maximum depth of the trees, with values of 10 
and None (indicating no maximum depth constraint).  

• The minimum number of samples required to split an 
internal node, with values of 2 and 5. 

• The minimum number of samples required to be at a 
leaf node, with a value of 1.  

For the XGB Regressor model, the grid search considered 
the following hyperparameters:  

• The number of boosting rounds, with values of 50 and 
100. 

• The maximum depth of a tree, with values of 6 and 
10. 

• The learning rate, or step size shrinkage, with values 
of 0.01 and 0.1. 

• The fraction of samples to be used for fitting the 
individual base learners (subsample), with values of 
0.5 and 0.8. 

• The fraction of columns to be used by each tree, with 
values of 0.5 and 0.8. 

• The L1 regularization term on the weights, with 
values of 0 and 0.1. 

• The L2 regularization term on the weights, with 
values of 0.1 and 1.  

These hyperparameters were tested in different 
combinations, and the models were trained and evaluated 
using cross-validation within each training partition to avoid 
data leakage [20]. The optimal set of hyperparameters for each 
model was determined based on the performance on the 
validation set. 

During the model training process, feature importance was 
evaluated, but due to time constraints during the competition, 
this informed feature selection process was only implemented 
in scenario 1. In this scenario, the feature matrix was refined 
by selecting only the n most important features, and the 
performance of the models trained with these selected features 

was evaluated on a validation set. The optimal value of n that 
maximized performance on the validation set was determined 
specifically for scenario 1. The full feature set was used for 
the remaining scenarios. 

The computational resources used for model training and 
evaluation included a cluster of five high performance 
computers with 8 cores each, two Xeon workstations with 12 
parallel processes and 64 GB of RAM, and an RTX 3090 GPU 
for enhanced processing capabilities. 

E. Validation Scenarios 

To thoroughly examine the different dimensions of model 
generalization, the competition organizers designed four 
different validation scenarios: across-time, across-subject, 
across-elicitor, and across-version. Each of these scenarios, 
consisting of different numbers of folds, was designed to 
assess a unique aspect of the model's ability to generalize: 

1. Across-time (1-fold): This scenario corresponds to a 
chronological hold-out validation approach where 
each sample, representing a single person watching a 
single video, is divided into training and test parts 
based on the timeline. The earlier parts of the video 
contribute to the training set, while the later parts 
form the test set. This scenario evaluates the model's 
ability to apply the knowledge gained from past data 
to make predictions about newly collected data 
within the same participant group and emotional 
context. 

2. Across-subject (5-fold): Following the leave-N-
subjects-out validation approach, this scenario 
divides participants into random groups, ensuring 
that all samples of a given participant group belong 
exclusively to either the training or test set. Each of 
the 5 folds leaves out a different set of subjects. This 
approach tests the model's ability to apply the 
knowledge learned from a given group of people to a 
different, previously unseen group. 

3. Across-elicitor (4-fold): During the data collection, 
each subject watched two videos per quadrant in the 
arousal-valence space. In this leave-one-stimuli-out 
validation scenario, each fold excludes both samples 
associated with a given quadrant from the train set, 
resulting in 4 folds. This scenario assesses the ability 
of the model to generalize from training on three 
arousal-valence quadrants to infer states experienced 
in the excluded quadrant. 

4. Across-version (2-fold): Each subject has two 
samples (videos) per quadrant in the arousal-valence 
space. In this scenario, one sample is used to train the 
model, while the other is used for testing, resulting in 
two folds. In this way, the ability of the model to 
generalize across different annotation versions can be 
investigated. 

Together, these four scenarios provide a robust and 
comprehensive assessment of model generalization, shedding 
light on model strengths and potential areas for improvement. 

F. Evaluation and Model Testing 

According to the rules of the EPiC 2023 competition, 
participants were initially given only the training data set. To 
estimate the performance of the models, we were asked to 
provide the predicted time series for both arousal and valence 



scores for each individual and stimulus in each fold, across all 
scenarios. The performance of our models in each scenario 
was evaluated using the Root Mean Square Error (RMSE) 
across all scenarios and dimensions (i.e., valence and arousal).  

It's worth noting that for each individual scenario, 
performance was estimated by calculating the average RMSE 
in each fold, with a lower value indicating better performance. 
After the competition, we were given access to the test sets, 
which allowed us to extend our analysis and gain further 
insight into the model's performance. These further 
evaluations using the test set are presented in the following 
sections. 

III. RESULTS 

A. Evaluate Predictive Model Performance Across 

Scenarios 
 

We first assessed the performance of the predictive models 
for both arousal and valence metrics across four different 
scenarios. To further ensure the robustness of our results, we 
compared the performance of the models against a set of 
dummy regressors. The dummy regressor chosen in our study 
consistently predicted a constant value. Specifically, the 
dummy predictor was programmed to consistently forecast a 
value of 5 for each dimension. This choice was directly 
influenced by the self-report scale, which ranged from 0 to 10, 
and was initiated with a default value of 5. This strategy was 
adopted after considering alternative methods for the dummy 
predictor selection, including one that would constantly 
predict the mean of the training set. However, the constant 5 
strategy proved to be the most robust and provided the highest 
overall performance across all scenarios, making it the most 
rigorous benchmark for comparison. 

Table I presents the comparative results between our 
models and the dummy predictor, and Figure 1 provides a 
visual representation of these results. One-tailed Wilcoxon 
signed-rank tests were performed to assess whether our 
models outperformed the dummy predictor. The p-values 
obtained from these tests were corrected for multiple 
comparisons using the Bonferroni method. Our models 
significantly outperformed the dummy predictor in scenario 1 
for both affective dimensions (arousal: W = 3140, p < 0.001; 
valence: W = 3482, p < 0.001) and in scenario 2 for arousal 
(W = 9856, p < 0.001). Specifically, our model achieved lower 
RMSE values than the constant value dummy predictor in 
these scenarios, demonstrating its superior performance on 
unseen data. However, in scenario 2 for valence and in 
scenarios 3 and 4 for both dimensions, we found no significant 
evidence that our models outperformed the dummy predictor 
(p > 0.98).   

 

 

 

 

 

 

 

 

TABLE I.  AVERAGE RMSE FOR EACH SCENARIO VS. DUMMY 

PREDICTORᵃ 

Scenario 
Arousal 

RMSE 

Dummy 

Predictor 

Arousal 

RMSE 

Valence 

RMSE 

Dummy 

Predictor 

Valence 

RMSE 

Scenario 1 0.8463 1.5548 0.8670 1.5924 

Scenario 2 1.1694 1.2864 1.3612 1.2719 

Scenario 3 1.6246 1.2855 1.4879 1.2654 

Scenario 4 1.5179 1.2846 1.3614 1.2602 

a. The average RMSE values shown in Table 1 were computed across different scenarios and files 
within the hold-out set, which was inaccessible during the competition. Therefore, these values 
represent the predictive performance of the model on unseen data, as compared to a baseline provided 
by the dummy predictor. 

 

 

In scenarios 1 and 2, where our models performed above 
chance in at least one dimension (outperforming the dummy 
regressors), we compared the performance of our arousal and 
valence predictions using the RMSE metric. We performed a 
one-tailed Wilcoxon signed-rank test to determine whether the 
arousal predictions performed significantly better than the 
valence predictions. The result showed that arousal 
predictions were indeed significantly better than valence 
predictions when looking at the combined performance in 
scenarios 1 and 2 (W = 49898, p < 0.01). 

 

 

Fig. 1. Boxplots with scatter plot overlaid comparing the distribution of 
RMSE values across four different scenarios (scenario 1 to 4) for both the 
arousal and valence dimensions, with predictions in each scenario also 
compared to dummy predictions. Each subplot represents one dimension: 
arousal at the top and valence at the bottom. Each boxplot represents the 
interquartile range (IQR) with a line at the median. Overlaid scatter plots 
show the performance of each model. 

 

B. Feature Importance in Arousal and Valence Models 

To illustrate the importance of the features in the arousal 
and valence models, we focus primarily on scenario 1. This 



is because this scenario outperformed the dummy regression 
model, suggesting a more robust relationship between 
physiological signals and participants' affective annotations. 
Scenario 1 also had the largest number of trained models. 
With one model for each subject (30) and stimulus (8), a total 
of 240 different models were available for testing. This 
allows us to demonstrate a broader distribution of feature 
importance. 

Feature importance was calculated based on the mean 
decrease in impurity and grouped according to the different 
physiological measures, with a particular focus on the 
partitioning of the window into past (pre-annotation), present 
(coinciding with the annotation period), and future (post-
annotation). Figure 2 shows the distribution of feature 
importance for each model, revealing a trend in which the 
pre-annotation features are more relevant for explaining 
affective states than the post-annotation physiological data. 

A nonparametric Kruskal-Wallis test was performed to 
analyze statistical differences in feature importance between 
the three partitions (past, present, and future), and the results 
indicated a significant difference between the groups (H(2) = 
199.57, p < 0.001). Subsequent post hoc analyses revealed 
that all pairwise comparisons between the three partitions 
were statistically significant (p < 0.001). These results 
underscore the strong relevance of pre-annotation 
physiological features in explaining affective states, and 
highlight the significant differences in feature importance 
across temporal partitions. The statistical evidence provides 
a robust basis for the observation that pre-annotation features 
are more predictive than those obtained during or after the 
annotation period. 
 
 

 
 

Fig. 2. Distribution of feature importance for the 240 models trained in 
scenario 1, It illustrates the distribution of feature importance by partitioning 
the window into past (pre-annotation), present (during annotation), and 
future (post-annotation) information. Boxplots, violin plots and scatterplots 
are used to visualize the feature importance distributions. 

 

IV. DISCUSSION 

 In this study, our exploration was driven by two primary 
goals: first, to analyze the performance of predictive models 
of affective states using continuous annotations, marking an 
unprecedented attempt to establish a performance benchmark 
for continuous predictive models on the Continuously 
Annotated Signals of Emotion (CASE) dataset; and second, to 
explore the complex relationships between arousal and 
valence prediction tasks and the role of physiological data in 

understanding the temporal dynamics of affective 
experiences. 

In scenario 1, our models, trained with both physiological 
signals and annotations from the same participant and video 
segment we wanted to predict, outperformed the constant-
value dummy predictor for both arousal and valence 
predictions. This suggests that maintaining participant and 
context continuity in the training data can potentially improve 
prediction performance. In contrast, our models only 
outperformed the dummy predictor for arousal prediction in 
scenario 2. In the remaining scenarios, the models failed to 
outperform the dummy predictor, suggesting possible 
limitations in the generalizability of our models or the 
complexity of the task in these conditions. 

Consistent with our predictions and the literature [8], our 
arousal models outperformed valence models in scenarios 1 
and 2, suggesting a more robust representation of sal changes 
by physiological data in this affective dimension . Future 
research could extend these observations by examining the 
performance differentiation between arousal and valence 
models, incorporating data from other participants in the EPiC 
2023 competition. By integrating a broader range of modeling 
approaches and signal processing techniques, we aim to 
increase the robustness and generalizability of our findings 
and further elucidate the physiological correlates of affective 
states and the distinctions between arousal and valence. 

In our study, we specifically focused on the timing of 
physiological features for emotion prediction and found that 
peripheral signals preceding the annotation were more 
predictive than those following the annotation. This finding 
underscores the critical importance of temporal aspects and 
greatly enriches our understanding of emotional dynamics. 
Such findings are consistent with broader theories that debate 
the complex relationship between the autonomic nervous 
system (ANS) and emotion. While some theories propose a 
bottom-up process in which the ANS triggers emotions, others 
contend that emotions drive ANS responses in a top-down 
manner. This complex interplay defies easy categorization and 
remains the subject of vigorous debate [21]. In the context of 
this debate, our work offers a unique perspective by 
highlighting the primacy of peripheral information in 
emotional experience. Our findings shed light on the potential 
importance of bottom-up processes in emotion generation, 
thus contributing nuanced insights to this multifaceted and 
ongoing dialogue. 

As a final point, to further improve affective computing 
models and to better understand the temporal dynamics of 
affective states, it is critical to develop better databases. These 
improvements should focus on expanding databases to include 
countries that are typically underrepresented in current 
studies, increasing the ecological validity of data through 
more immersive methods of emotion elicitation, such as 
virtual reality [22], and incorporating both central (e.g., 
electroencephalography) and peripheral (e.g., EDA, ECG, and 
EMG) measures of neural activity [23]. It is worth noting that 
the overall poor performance of predictive models may be due 
to low emotional induction resulting from data collection in 
the database. By addressing these areas, researchers can gain 
a more complete understanding of the complex interplay 
between physiological and neural processes underlying 
emotional experiences. As a result, this would lead to the 
development of more robust and explicable affective 
computational models that better reflect the complexity of 



real-world emotional experiences, ultimately benefiting the 
broader understanding of emotion dynamics within affective 
science. 

V. CONCLUSION 

Our work serves as an example of the potential analyses 
that can be conducted using affective computing and 
predictive modeling to shed light on affective science. This is 
paper that aims to benchmark continuous models of affective 
states, with positive results under constrained conditions. The 
insights gained from our study can inspire further research to 
better understand the temporal dynamics of affective states 
and their neural correlates. By bridging the gap between 
affective computing and affective science, our work 
encourages the development of more effective and 
explainable affective computing applications, fostering a 
closer connection between these two fields, and ultimately 
benefiting the broader understanding of emotion dynamics 
within affective science. 

 

ETHICAL IMPACT STATEMENT  

In this paper, we investigate the temporal dynamics of 
emotions using the Continuously Annotated Signals of 
Emotion (CASE) dataset during the EPiC 2023 competition. 
As we delve into the opportunities offered by affective 
computing research, it is crucial to address potential ethical 
concerns, especially when predicting and modeling human 
emotions [24], [25]. There is a possibility that the research 
could be used deceptively, for instance, in targeted advertising 
based on emotional states. To mitigate this risk, regulatory 
measures should be established to prevent the exploitation of 
affective computing technologies for non ethical purposes. 
Moreover, affective computing technologies have the 
potential to be employed in applications that limit human 
rights or impact people's livelihoods, such as surveillance or 
access to jobs and schools [26]. Addressing these concerns 
requires ongoing dialogue and collaboration among 
researchers, practitioners, and stakeholders to ensure the 
responsible development and implementation of affective 
computing technologies [10]. While acknowledging the 
potential for bias introduced by the WEIRD (Western, 
Educated, Industrialized, Rich, and Democratic) participant 
pool of 30, future studies should extend datasets to non-
WEIRD countries for better cultural and demographic 
representation, given the known cross-cultural differences in 
emotional perception [27, 28]  Furthermore, the research 
examines the temporal dynamics of emotions in the range of 
seconds to minutes. To better understand affective 
phenomena, ecological contexts should be studied over longer 
periods, such as days, weeks, or months [1]. This would help 
reveal the complex interplay of emotions over extended 
durations. In conclusion, acknowledging and addressing 
ethical considerations and limitations are vital in affective 
computing research. By doing so, we can advance our 
understanding of human emotions while mitigating potential 
risks and ethical concerns, thereby fostering responsible 
development and deployment of affective computing 
technologies. 
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